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Abstract. We study the magnetic relaxation of a system of localized spins interacting through weak dipole
interactions, at a temperature large with respect to the ordering temperature but low with respect to the
crystal field level splitting. The relaxation results from quantum spin tunneling but is only allowed on sites
where the dipole field is very small. At low times, the magnetization decrease is proportional to v/t as
predicted by Prokofiev and Stamp, and at long times the relaxation can be described as an extension of a
relaxed zone. The results can be directly compared with very recent experimental data on Feg molecular
clusters.

PACS. 75.45.4j Macroscopic quantum phenomena in magnetic systems — 75.40.Mg Numerical simulation
studies — 75.50.Xx Molecular magnets — 61.46.4+w Clusters, nanoparticles, and nanocrystalline materials

1 A novel relaxation mechanism

The relaxation of a quantity m(t) toward its equilibrium
value m(oo) is usually described by a standard model
taken from a surprisingly limited set, in contrast with the
extreme diversity of the physical problems to which each
of these models apply. The simplest model is the linear
equation

dt

where « is a constant.

The compound [(tacn)sFesOg(OH)g]®" (where tacn is
1-4-7-triazacyclononane) pertains, at low temperature T
< 1 K, to a new class which has not been studied un-
til very recently [1,2]. This material [3], hereafter called
“Feg”, is a paramagnet and the quantity m(t) of interest is
the magnetization per spin, more precisely its component
along a well defined axis z which is an easy magnetization
axis. According to current knowledge [3], this material is
made of molecular groups, each of which contains 8 ions
Fet** and has at low temperature a spin s = 10 which
results from a strong exchange coupling between the 8
Fet* ions. At low temperature each molecular spin S;
is oriented along z, with the value

S:=S; = +s. 2)
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The weak dipole interaction between different molecular
groups is not sufficient to produce a magnetic order at
any accessible temperature and, at thermal equilibrium,
the +s and —s spins are randomly distributed with an av-
erage value m(oco) which depends on the external field. In
a typical relaxation experiment at very low temperature,
all spins are initially in the state

57(0) = —s (3)

so that m(0) = —s.
Above 1 K, the relaxation is well described by (1) and
the relaxation is exponential [3],

m(t) —m(oo) = [m(0) — m(oo)] exp(—t/7).  (4)

However, at low temperature, the relaxation is not expo-
nential. At long times ¢, it is pretty well described by a
stretched exponential [3]

m(t) —m(o0) = [m(0) — m(oo)] exp[~(t/7)"]  (5)

where the exponent 31 depends on T and takes the value
1 above 1 K. Below 0.4 K, f3; is nearly constant [3] and
equal to

B1 =~ 0.4. (6)
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In the present work, kinetic Monte Carlo simulations of
the magnetic relaxation of Feg are reported; they are made
on the basis of a model described in the next section.

2 The incoherent tunneling model

At the low temperatures of interest, thermal activation is
impossible and the relaxation takes place by tunneling.
In weak external field, tunneling takes place between the
two states (2), and is only possible for a spin S; if the
z-component H; of the local magnetic field is very close
to 0, say

—H1 <Hi <H1 (7)

where H; is a constant which will be precised below. The
local field is the sum of the external field H.x¢ and an
internal field. In most of materials, the internal field is
partly due to nuclear spins (hyperfine interactions). When
the magnetic particles are Fe, the hyperfine contact in-
teraction is nearly absent because the most common Fe
isotope has no spin, the magnetic isotope has a weak con-
centration (2%) and moreover a weak spin (1/2). In the
present work, hyperfine interactions will not be explicitly
taken into account in the evaluation of the internal field.
They are but implicitly included in the theory since they
are probably [1,2] responsible for the resonance width Hj.
This width has been measured by Wernsdorfer et al. [4] in
Feg and is of order 10 Oersteds.

Thus, the internal field only depends on the molecular
spins through the formula

Héf; => 9iS;. (8)

This field will hereafter be called “dipole field” although
it may also contain an exchange component. At long dis-
tance this exchange part vanishes and the coefficients
gij = g(r; — r;) behave according to the formula

o(r) =~ (1-322/r%) )

where z is the component of r on the z axis.

In a finite system, tunneling is an undamped oscilla-
tion between two states and does not really result in relax-
ation. For instance, if the spin S; were isolated, it would
oscillate in zero field between the two states (2). This is
not true for the large systems which are studied in experi-
mental physics, and it is reasonable to make the following
assumption.

Basic assumption

Any spin i subject to a local field H; has a probability
n(H;) per unit time of transition between the two states
(2). The real, nonnegative function n(H;) is negligible if
H; does not satisfy (7).

The choice of the function n(H) is presumably not es-
sential provided the above properties are satisfied. A pos-

sible choice is

n(H)=n(0) [1 - %} )

(|H| > H).

The above assumption defines the “incoherent tunneling
model” which is studied in the next sections. Since the
spin-flip transitions modify the fields, the relaxation de-
fined by the basic assumptions and by formula (8) is dif-
ficult. It has been investigated by kinetic Monte Carlo
simulations by Prokofiev and Stamp [1] and by Ohm and
Paulsen [5]. More detailed results are presented in Sec-
tion 6. They include a detailed analysis of the effect of the
sample shape and crystal structure.

Prokofiev and Stamp have given an analytic descrip-
tion of the short time behavior. A critical summary of this
theory is given in the next section.

In higher external field, the basic assumption must
be modified since tunneling becomes possible from state
S; = —s to an eigenstate (or rather, nearly eigenstate)
St = m, with 0 < m < s, if the external field is such
that two eigenvectors of the spin Hamiltonian have nearly
the same energy (resonance condition) [6]. Then, the spin
emits phonons and goes to state S = s. It would be easy
to include this possibility in the following calculations, but
for the sake of simplicity it will be ignored. This is correct
if the external field is not too large.

3 The Prokofiev-Stamp approximation
for a sphere

Since the dipole interactions (8) are essential in the model,
the shape of the sample should be important if the model
is correct. The simplest case is that of a spherical sample.
Then (3) implies, at ¢ = 0, that the local field H; has the
same value H(0) for all spins i, except near the surface.

It will be assumed in this section that the sample is
spherical and that the external field is such that H(0) =
0. These conditions allow the rapid reversal of a certain
amount of spins. Because of this process, the local field is
no longer uniform, so that the reversal of most of the other
spins is hindered. The distribution P(¢; H) of the local
fields at time ¢ will be assumed to be continuous, and the
proportion of spins which can reverse in the time unit is
of order n(0)H1 P(t;0); this value is exact if n(H) = const.
in a range of width H; and zero outside. If one assumes
that the local field H; and the spin S; are independent at
each time, it follows from equation (10)

d

om(t) = ~5n(0)Hy P(t;0)m().

(11)
The function P(t; H) is characterized by its width
I'(t), so that (11) can be replaced by

d

Som(t) = ~5n(0) Hym(®)/ T (1)

In order to obtain a closed evolution equation for
m(t), one should relate I'(t) to the magnetization m(t).

(12)
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When m has its saturation value —s, as is the case at t = 0,
the width I" vanishes for a spherical sample. According to
Prokofiev and Stamp, I'(t) = I'(m(t)) with

I'(m) = (1 —|m|/s)Hq (13)

where the constant Hy has the order of magnitude of the
maximum dipole field.

Relation (13) can be justified as follows. At short
times, the local field is the sum of the initial field, which
has been assumed to be 0, and the dipole field produced
by those spins which are already reversed. Let ¢ be the
average distance between those spins. The typical value
of the resulting dipole field, as given by (9), is of order
K/0? ~ Hqa®/03, where a is the distance between spins.
The width I'(m) should have the same order of magni-
tude, I'(m) ~ Hqa®/¢3. Now, a®/¢3 is the proportion of
reversed spins, i.e. (1 —|m|/s)/2. Relation (13) follows.

Insertion of (13) into (12) yields

[1—Im(t)l/S]%[l—lm(t)l/S] ~n(0)Hy|m(t)|/(sHa) (14)
the solution of which is
n(0)Hit/Ha = |m(t)[/s — 1 — In[|m(t)|/s]. (15)

For short times, (15) reduces to the result of Prokofiev
and Stamp [1]

L= |m(t)|/s ~ Vt/7a (16)
while, for long times, (15) reduces to
m))fs ~ exp |~ 1] a7)
where H,
Ta = W (18)

Formula (16) will be seen to describe correctly the short
time behaviour, while the long time behaviour will be seen
to be described by (5). Formulae (15, 17) will be seen not
to be satisfactory at long times. This remark shows that
the approximations made in the derivation of (16) are only
valid at short times.

4 Non-resonant fields and non-spherical
samples

The analytic formulae (15-17) have been obtained for a
spherical sample when the external field is such that, at
t = 0, the “resonance condition” H; = 0 is satisfied for all
spins 4.

If in (8) the sum is replaced by an integral, the local
field is uniform in a spherical sample, and vanishes exactly
at saturation (i.e. if S; = —s) if the external field is absent.
However, the replacement by an integral is not exact, and
the local field is not uniform at saturation, although it is
very sharply peaked (Fig. 1a). As a matter of fact, it is
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Fig. 1. Distribution of local fields at the sites of a simple
cubic lattice occupied by spins parallel to the z axis. (a) Sphere
of 9134 spins. The wings are due to the surface, as shown in
picture (b). In such picture the clear regions are those where
the local field is larger than its average value, the dark regions
are those where it is lower. (c) Cube of different sizes: 10 x 10 x
10, 20 x 20 x 20, and 40 x 40 x 40 spins, starting from below.
The field is measured in units gus S/a® (~ 80 Oersted, setting
S =10 and a ~ 13 A, average distance among Feg clusters in
the actual compound). Note as the size of the sample affects
the discretization of the field values.
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impossible to cut a perfect sphere in a crystalline material,
and the edges can only be approximately spherical [7].

Relaxation can thus occur near the surface even if the
resonance condition H; = 0 is not satisfied in the bulk.
The relaxation can propagate and possibly become total as
t — co. Whether this occurs or not is one of the questions
to be answered by the simulations reported below.

If the sample is not a sphere (nor an ellipsoid) the
resonance condition can only be satisfied in a part of the
sample, even at t = 0, when S; = —s (Fig. 2b) so that
the local field has a broad distribution (Figs. lc, 2a).
According to Prokofiev and Stamp [1], the variation of the

magnetization at short time ¢ is still proportional to \/t/7
as in (16); such prediction has recently received beautiful
experimental confirmations [4,5]. Moreover in reference [1]
is found that the short time relaxation constant 7 contains
the volume where the local field has its resonance value.
This prediction ignores the possible extension of this vol-
ume in time, and is therefore somewhat speculative, but
it opens the possibility to experimentally probe the field
distribution [4].

For a non-spherical sample, the square root law is
observed on a broader field interval since the field dis-
tribution is broader. Moreover, the square root law can
be generalized to any value of the initial magnetization
namely [4]

m(0) — m(t) ~ const.v/%. (19)

This result holds only if the density of the local field does
not change much for a field variation of the order of the
resonance width H;p. This excludes spherical samples.

Some of the formulae written in Section 3 for a
spherical sample can be generalized. For instance, if one
introduces the local magnetization m(r,t) and the lo-
cal distribution P(r,t; H) of internal field, (11) can be
generalized as

%m(r, t) = —%n(O)Hlp(r, t;0)m(r,t).

Integrating P(r,t; H) on r, one obtains the distribution
of local fields at time ¢,

(20)

p(t; H) = /d3r /jo dH'P(r,t; H)S(H' — H)  (21)

which is shown for ¢ = 0 for various sample shapes on
Figures 1, 2 and 3.

5 Monte Carlo simulations: model
and method

The model sketched in Section 2 is not yet completely
defined. The crystal lattice, for instance, has not been de-
fined.

The material Feg has a complicated, triclinic crystal
structure. It can be taken into account in the simulations,
but this does not warrant realism. A complete, realistic
calculation would imply a calculation of the coefficients
gi; taking into account the exact shape of the electronic
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Fig. 2. (a) Distribution of local fields at the sites of a simple
cubic lattice occupied by spins parallel to the z axis for a paral-
lelepiped of 12 x 17 x 36 spins. (b) The local fields through this
sample: below each picture is reported the value of the external
field to be applied to bring the shaded spins to resonance (the
local field is given in units gupS/a® ~ 80 Oersted, see text in
Sect. 5).

wave functions. This would be a difficult task. Moreover,
the presence of short range exchange interactions, which
would be more difficult yet to calculate, cannot be ex-
cluded.

We believe that all these unknown effects can be taken
into account by a single parameter, which is the value
Hy of the external field at resonance for a sphere or at
the center of a cube. For a cubic sample of a cubic crys-
tal, Hy = 0 by symmetry. For the real material Feg, H
does not vanish, cannot be calculated for the reasons ex-
plained above, but can easily be measured. When it is
known, the field distribution in a sample of any shape
can be calculated for a cubic lattice, and then obtained
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Fig. 3. Distribution of internal fields in a magnetically satu-
rated sample of cubic shape. a) Spins localized at the Fe-ions
sites of the actual material, ignoring the actual electronic den-
sity. b) Single giant spins localized at the sites of a triclinic
lattice with the unit cell parameters of Fes. ¢) Single giant
spins localized at the sites of a cubic lattice with lattice con-
stant @ = 13 A. d) The same distributions given in the previous
picture, with a) (open squares) and b) (open triangles) shifted
by 280 and 360 Oersted, respectively.

for the real material by shifting the field scale by an
amount Hp. The above views are supported by Figure 3
which shows the internal field distribution for a cubic lat-
tice compared to other possible models. The distributions
are not very different apart from a shift.

Most of our simulations have been performed on a cu-
bic lattice. We have done a single simulation on a system
with the crystal structure of Feg (but with localized spins)
and checked that there is no significant difference with
simulations on a cubic lattice.

An important parameter is the resonance width Hj.
If it were larger than Hgip, the relaxation would be fast
and exponential. The experimentally observed, slow re-
laxation is certainly related to a small value of Hy. In
the simulations, H; cannot be smaller than the typical
distance between the discrete values of the dipole field,
which has a lower limit since the sample cannot be very
large (see Fig. 1c); however, the sample dimension in our
simulation allows us to employ a value of H; of the same
order of magnitude of that deducible from experiments.
In evaluating the local field we add to the dipolar con-
tribution given by equations (8, 9) a constant, external,
applied field which can be varied. In most of the figures
reporting results of simulations we use the reduced field
h = H/H, where H = gupS/a® ~ 80 Oersted, for S = 10
and a = 13 A.

The Monte Carlo algorithm employed to simulate the
dynamics of our systems is an implementation of those
proposed and discussed elsewhere [8,9].

We start from a completely magnetized sample at time
t = 0, and we evaluate the local field H; acting on any site
1 of the lattice; we then cycle through the following steps:

i) We single out those sites where |H;| < Hj; let
us denote with ng the number of such spins which, ac-

cording to our model, can relax with a probability given
by equation (10). ) We increment time replacing ¢ by
t+ At, where At is chosen stochastically with probability
nonge Mm0A i e we set At = —In&/(nong), where € is a
generated number uniformly distributed in (0,1). 4) We
randomly choose one of those ng spins singled out in step
i) and flip it with probability given by equation (10). 4, )
If the spin has been flipped we update the total magne-
tization and the fields on all sites of the lattice. iv) We
come back to step ).

For any set of the simulation parameters different in-
dependent runs were made and averaged. Some sample
runs where also done using the more elementary algorithm
which uses constant time steps; the results obtained are
the same, but it takes much longer time, due to the small-
ness of the time step to be used to get stable results.

6 Monte Carlo simulations: results
6.1 Short time behavior
6.1.1 Spherical samples

For a spherical sample, the Prokofiev-Stamp formula (16)
is very well satisfied if the uniform, initial local field H(0)
is smaller than the width Hy (Fig. 4). For those fields, the
agreement with (16) is good (except at very short times)
as long as the magnetization is larger than 80% of its ini-
tial value. At extremely short times, the magnetization
decays linearly with ¢ as well known [1]. This can be un-
derstood because the spins relax independently since the
average distance between reversed spins is very large and
the dipole field created by the reversed spins is smaller
than the width H;.

Away from the resonance, i.e. for H(0) = H > Hj,
formula (16) is no longer satisfied. However, if the initial
field is not too far from the resonance, the magnetiza-
tion becomes a linear function of /¢ after a certain time
71(H). This phenomenon can presumably be interpreted
as follows. For short times, P(r,¢;0) = 0 except near the
surface, so that Om/0t is small according to equation (20).
However, a partly relaxed zone, with P(r,t;0) # 0, will
progressively invade the whole sample. The invasion is to-
tal at time 71(H). This time can be expected to become
very long for big samples.

6.1.2 Parallelepipedic samples

We investigated an elongated, parallelepipedic sample
whose shape (12 x 17 x 36 spins) roughly corresponds
to that which was experimentally measured [3]. The
Prokofiev-Stamp prediction (19) is satisfied for short times
as shown by Figure 5. However, these “short” times are
differently short for different external fields. For certain
field values, the slope |dm/dv/t| suddenly decreases after
a rather short time and the magnetization curve crosses
other magnetization curves which satisfy the Prokofiev-
Stamp prediction on a longer interval. This crossing has
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Fig. 4. Magnetization as a function of the square root of
the time for a spherical sample of radius 13 lattice constants
for n(0) = 10* and various applied fields h. From the upper-
most curve: h=0.3, h=0.2, h=0.15, h=0.1, h=0.05, h=0. The
reported data are the average over 10 independent runs. In the
inset the field distribution is reported.

not been experimentally seen. It is of interest to relate the
different shapes of the demagnetization curve to the ini-
tial internal field density p(0; H) shown by Figure 2a. The
curve p(0; H) has a sharp maximum, decreases abruptly to
0 on one side and much more smoothly on the other side.
The field values which satisfy the Prokofiev-Stamp predic-
tion for a long time correspond to the smooth side. Those
which correspond to the steep side and to the maximum
satisfy the Prokofiev-Stamp prediction during a shorter
time. We have no precise explanation for these observa-
tions, but it seems to be related to the sharp edge of the
distribution and to the fact that the spin interested by
relaxation are in this case mostly concentrated on the sur-
face of the sample.

6.2 Long time behavior
6.2.1 Spherical sample

Figure 6 shows the total magnetization at long times in
the case of a sphere. It turns out to be well fitted by a
stretched exponential with §; = 0.37; however the good
agreement with (6) is not very significant since, as will
be seen later, the parameter (; seems to depend on the
sample shape, and the experiments are mostly done on a
parallelepipedic sample. No good fit by (15) is possible.
The distribution p(t; H) of the internal fields, initially
very sharply peaked, smoothens as shown by Figure 7.

6.2.2 Cubic and parallelepipedic samples: effect of geometry

The magnetization of a cube is shown by Figure 8, to-
gether with the magnetization of smaller cubes of various
sizes having the same center as the whole sample. The
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Fig. 5. Magnetization as a function of the square root of the
time for a parallelepipedic sample of 12 x 17 x 36 spins for
n(0) = 10*; the longest side is along the easy magnetization
axis. The various curves correspond to the following applied
fields: a) h=3; b) h=2.6; ¢) h=3.2; d) h=2.4; e) h=2.2; {) h=3.4;
g) h=2; h) h=1.6; 1) h=3.6. The reported data are the average
over 10 independent runs.
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Fig. 6. Long time relaxation of the magnetization in a spher-
ical sample of radius r = 13 for n(0) = 10*. Continuous lines:
magnetization as function of time for external applied field
h = 0.1 (uppermost curve, fitted stretched exponential pa-
rameters: 81 = 0.36, 7 = 0.036) and h = 0 (fitted stretched
exponential parameters: $1 = 0.33, 7 = 0.037). The dashed
lines show the fraction of spins which have never flipped, for
the same values of the applied field and in the same order.
The thin, steady lines through the magnetization curves are
the stretched exponential fits.

external field H is chosen such that the internal field van-
ishes at the center of the sample at ¢t = 0, 7.e. H = 0 in
our model. The magnetization of the central region is seen
to have almost completely vanished while the relaxation
is still very weak at the periphery of the sample. This sug-
gests that the latest stage of the relaxation is dominated
by the motion of the boundary of the relaxed region.
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Fig. 8. Magnetization as a function of time for a cubic sample
of 32% spins and in regions of cubic shape having the same
center as the cube. The external field is chosen such that the
internal field vanishes at the center of the sample at t = 0,
H; =0.1,7(0) = 1 (in order to compare with the data for other
sample shapes reported in the other figures, please note that a
change of 7(0) entails only a rescaling of time), and the average
is done over 20 realizations. Upper curve: magnetization in the
full sample of 323 spins. Lower curves: magnetization in sub-
cubes, concentric to the full one, of the dimension given in the
legend.

The cubic shape of the inner regions chosen in Fig-
ure 8 is the simplest choice, but perhaps not the best. At
short times, the relaxed region is indeed expected to be
the volume where the internal field vanishes in the satu-
rated sample, and this volume is more complicated than
a cube.

The relaxation of the central region is well described
by the formula

t = Aln®[m(t)/s] + Bln*[m(t)/s] , (22)

with B/A =~ 0.1.
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Fig. 9. Long time relaxation of the magnetization in a par-
allelepipedic sample 12 x 17 x 36 for n(0) = 10* in external
applied field h = 2.4. Continuous line: magnetization as func-
tion of time; dashed line: fraction of spins which have never
flipped; the thin, steady line through the magnetization curves
is the stretched exponential fit with parameters 81 = 0.33,
7 = 0.026.
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Fig. 10. Evolution of the field distribution in a parallelepiped
12 x 17 x 36 with external applied field h = 2.4, corresponding
to a local field h; = —0.704 at the center of the sample; in each
picture the value of the corresponding magnetization is given.

The decay of the total magnetization is very well fit-
ted, until 0.15 times the saturation value, by a stretched
exponential with 8; = 1/4, which is quite far from the
experimental value (6) for elongated samples. A simula-
tion done in an elongated parallelepipedic sample (Fig. 9)
yields (31 = 0.33, which is closer to the experimental value.

The distribution p(t; H) of the internal fields, initially
very sharply peaked, smoothens as shown by Figure 10 in
the case of a parallelepiped.
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Fig. 11. Short time inverse relaxation time 7' as a function
of applied field for a sphere of radius r = 13 (lower pictures)
and a parallelepiped 12 x 17 x 36 for two different widths of the
resonance, H1 = 0.1 (left) and H1 = 0.2 (right) and 1(0) = 10%.

6.2.3 Effect of Hy

The effect of H; is shown by Figure 11. The time scale
is modified as expected, but the dependence of the relax-
ation time with respect to the external field is not strongly
modified, and well compares with that observed in the ex-
periments.

7 Conclusions

Our contribution complements the work of Prokofiev and
Stamp [1,2] and suggests new experiments. In particular,
it is shown that the overall magnetization is remarkably
well fitted by a stretched exponential, with an exponent

which seems to depend on the sample shape and takes
values from 1/4 to 0.4. Moreover, it is pointed out that
the slow relaxation observed in parallelepipedic samples
is mainly a result of the slow extension of the relaxed
region, and the central region relaxes much more rapidly.
The experimental check of this property would be a crucial
test of the model. It might be feasible using multisquids
as in the recent experiment of Wernsdorfer et al. [4].

Fruitful discussions with D. Gatteschi and R. Sessoli are grate-
fully acknowledged.
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